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Reliability and performance of microelectronic devices depend to a large extent on
the resistance of interconnect lines. Voids and cracks may occur in the interconnects,
causing a severe increase in the total resistance and even open circuits. In this work we
analyze void motion and evolution due to surface diffusion effects and applied exter-
nal voltage. The interconnects under consideration are three-dimensional (sandwich)
constructs made of a very thin metal film of possibly variable thickness attached to
a substrate of nonvanishing conductance. A two-dimensional level set approach was
applied to study the dynamics of the moving (assumed one-dimensional) boundary of
a void in the metal film. The level set formulation of an electromigration and diffusion
model results in a fourth-order nonlinear (two-dimensional) time-dependent PDE.
This equation was discretized by finite differences on a regular grid in space and a
Runge–Kutta integration scheme in time, and solved simultaneously with a second-
order static elliptic PDE describing the electric potential distribution throughout the
interconnect line. The well-posed three-dimensional problem for the potential was
approximated via singular perturbations, in the limit of small aspect ratio, by a two-
dimensional elliptic equation with variable coefficients describing the combined local
conductivity of metal and substrate (which is allowed to vary in time and space). The
difference scheme for the elliptic PDE was solved by a multigrid technique at each
time step. Motion of voids in both weak and strong electric fields was examined,
and different initial void configurations were considered, including circles, ellipses,
polygons with rounded corners, a butterfly, and long grooves. Analysis of the void
behavior and its influence on the resistance gives the circuit designer a tool for
choosing the proper parameters of an interconnect (width-to-length ratio, properties
of the line material, conductivity of the underlayer, etc.).c© 2001 Academic Press
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1. INTRODUCTION

Evolution and migration of voids in the interconnects of microelectronic devices lead
to considerable variations in the total resistance of a line, depending on the void shape
and size and on the specific conductivities of the metal and underlayer. Unpredictable
propagation and dynamics of the void may cause open circuits and other failures. Increase
of the interconnect resistance can often be considered a circuit failure criterion. Analysis
of the grain–void interface motion provides valuable information for a circuit designer and
makes it possible to predict the circuit performance and reliability for currently available
and newly emerging materials. The simulation results can be used for better choice of the
circuit parameters, interconnect geometry, underlayer properties, etc.

There are several numerical approaches to track the problem of propagating interfaces
(moving curves and surfaces). Bower and Freund [2] developed a finite element formulation
and applied it to compute the effect of diffusion and deformation in an electrically con-
ducting, deformable solid. They idealized an interconnect as a two-dimensional assembly
of grains, with planar grain boundaries. In the absence of electrical current, the diffusion
is assumed to be driven by a variation in chemical potential, associated mainly with the
free energy of the surface, which in turn is related to the surface curvature. If an elec-
tric current flows down the line, it gives rise to an additional driving force for diffusion.
These assumptions lead to a set of governing partial differential equations of motion of
first order in time and fourth order in space, with the corresponding initial and boundary
conditions. A weak formulation to solve the equations of motion employing six-node tri-
angular elements in space and finite differences in time was developed. The finite ele-
ment approach was further extended by Xiaet al. [28] who examine the mechanisms
of failure in the interconnects associated with diffusion of material along the surfaces,
interfaces, or grain boundaries. The authors implemented an improved mesh adaption
strategy.

The transmission-line matrix (TLM) approach was used by Guiet al. [4] to study the
one-dimensional electromigration problem under pulsed direct current conditions. The
TLM approach is a time domain numerical technique involving the use of electrical circuit
analogs. In this method, established for solving diffusion and diffusion-related problems,
voltage is linked to the vacancy concentration, and current is linked to the mass flux.
Another method that can be used for the electromigration problem is the curve tracking
procedure [5]. Front tracking is a numerical method in which surfaces of discontinuity
are given explicit computational degrees of freedom. These degrees of freedom are sup-
plemented by degrees of freedom representing continuous solution values at regular grid
points.

In this paper, we develop an analytical and numerical approach to track the dynamics
of the void motion under the action of a surface diffusion and an external voltage. The
motion is studied using a level set method, where the closed interface between the void
and the surrounding material is identified with the zero level of a special two-dimensional
function which depends on space and varies in time. In the case of a single interface,
separating two phases (e.g., a grain and a void inside), the central idea of the level set
method [6, 7] is to follow the evolution of a special function whose zero level corresponds
to the position of the moving interface. Motion of the interfaces with sharp corners is
studied with the use of essentially nonoscillatory (ENO) schemes with different orders
[14–16].
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Consider a boundary which is either a curve in two-dimensions [9] or a surface in three
dimensions [10], separating one region from another. Usually, the basic assumption is that
this curve or surface moves in its normal direction with a known speed functionF . The
tangential motion is neglected. The normal speed depends on the local properties of the
front at the given point (such as curvature and/or its derivatives, derivatives of electric field
strength, etc.), on the global properties (such as integrals along the front, which, in turn,
depend on the shape and position of the front), and on the independent properties (material
constants, etc.). Given the initial position for an interface0, where0 is a two-dimensional
closed curve, the level set method views0 as the zero level of a functionφ(x, y, t). Initially,
the level function is defined to be a signed distance from a given point to the interface line.
The function is negative inside the front and positive outside the front. For a two-dimensional
case, the level functionφ is governed by a partial differential equation, which involves the
normal velocityF of the interface curve [11]:

φt + F ·
√
φ2

x + φ2
y = 0. (1.1)

Generally,F depends on the specific physical problem under consideration. In the present
study, the front velocity includes the surface diffusion and electromigration components,
depending on the second derivatives of the interface curvatureK and of the voltageU ,
respectively [26, 31]. The motion of the interface separating the void from the metal is
due to surface diffusion and therefore the interface can be viewed as “sharp” on the macro
scale. The connection between sharp and diffused interface motion laws via gradient flow
can be found in [33]. The derivatives are taken with respect to the interface arclengths:

F = BKss+ αUss. (1.2)

The constant coefficientsB andα express the contribution of the diffusion forces and the
field forces, respectively. They depend on the properties of the material, temperature, etc.
and are considered constant.B is always positive andα is positive for the migration of a
void surrounded by a conducting material. The ratio between the diffusion forces and the
field forces is of great importance since it defines the dynamics and stability of the void
motion. In any case, the void migrates in the direction opposite to the external voltage, but
its evolution varies, depending onα/B. When the diffusion forces prevail, any initial shape
of the void becomes circular. For a moderately strong field, the circular shape of the void
remains in equilibrium, but such equilibrium is no longer stable, and another noncircular
stable equilibrium shape exists. For an extremely strong field, a void of any shape, whose
area exceeds a definite threshold, ceases to be stable and splits into several slit-like smaller
voids.

The governing PDE needs to be solved only in the vicinity of the interface; however it turns
out that the computational bottleneck is presently the solution of the two-dimensional, ellip-
tic, electrostatic equation. For simplicity we used initially an algorithm that solves the diffu-
sion equation for the entire internal domain of the two-dimensional computational box; the
definition of the normal velocity is extended from the interface points to all points of the
box. For this, we consider an arbitrary point and draw a line of constant level that passes
through this point. The level value vanishes at the interface points only; otherwise we deal
with a nonzero level line. The curvature of the level line, the voltage, and their derivatives
with respect to the level line arclength can be established at any point. Thus, the governing
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PDE is extended to noninterface points. On the extension,Kss is the second derivative of the
curvature of the level line, which passes through a given point, with respect to the arclength
of this level line, andUss is the second derivative of the potential with respect to the level
line arclength.

The front velocity depends on the second derivative of the curvature, and the curvature,
in turn, is defined by the second derivatives of the level function. Therefore the governing
PDE is of fourth order in space and of first order in time. The equation is solved numer-
ically by applying an explicit time-integration approach: finite difference discretization in
space and a Runge–Kutta 2 integration scheme in time. Such a low-order Runge–Kutta
scheme is justified by the relatively small magnitude of the time step, which is dictated
by the stringent stability requirement. For the explicit scheme, the upper bound of the al-
lowable step is proportional to the fourth power of the spatial grid resolution. The area
which is confined by the closed front remains constant during the void motion. The applied
scheme does not necessitate boundary conditions (BC). Instead of BC, we use one-sided
differences to approximate the derivatives at the boundary points of the computational
box.

The interface configuration is specified by a finite set of discrete points which generates
a closed curve. These points do not necessarily coincide with the grid points of the com-
putational box. A spline technique is used to restore the parametric equations of the front.
We apply the standard cubic spline using cyclic boundary conditions. To estimate the
new location of the front, the zero line of the level function is established. For this, we
solve numerically a nonlinear equationφ(x, y) = 0, moving along the gradient lines in
ascending and descending directions. The previous location of the front is used as an
initial approximation for its current location. At nongrid points, the level function and its
derivatives are approximated by a double polynomial interpolation of fifth order.

The level function, defined initially as a distance from the given point to the interface
curve, ceases to be a distance function after at least one time step. In this case, a reini-
tialization procedure is necessary. When a time step is completed, we find the interface
configuration as the zero level line, and then we update the level function, calculating
the distances between the grid nodes and the moving front. If the reinitialization procedure
is employed several times per each time step, then the level function coincides with the
distance to the interface curve. The number of reinitializations corresponds to the order of
the Runge–Kutta scheme. For the level function, coinciding with the distance, the gradient
is of unit length:

φ2
x + φ2

y = 1. (1.3)

Then, the following relations hold for the curvature and its second derivative. These simplify
the computational procedure:

K = ∇2φ; Kss= ∇2K − K 3. (1.4)

Analytic results were also obtained for the rate of change of the interface length.
The voltage distributionU (x, y) is described by an approximate elliptic PDE, which is

derived from the well-posed three-dimensional potential problem for the two-layer inter-
connect. The assumptions and derivation for the case of small aspect ratio is described later
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and results in

∂

∂x

(
k
∂U

∂x

)
+ ∂

∂y

(
k
∂U

∂y

)
= 0, (1.5)

wherek(x, y) is the specific electric conductivity of the material, and it varies in space
through the presence of the void. A finite difference scheme was developed and analyzed
to solve Eq. (1.5). This equation requires continuous distribution of a specific conductivity.
However, this distribution in the physical system under consideration is discontinuous.
The conductivity inside the void differs by a finite value from that of the surrounding
material. In the finite difference approach, the discontinuous distribution of the conductivity
is smoothed by a special function. The finite difference discretization of the domain leads to
a linear algebraic equation set with a sparse band matrix. This set is solved with an effective
multigrid iterative procedure, developed specially for a boundary value elliptic problem
with rapidly varying coefficients. The solution of the previous time step is used as an initial
approximation for the current step which allows fast convergence. Then the total resistance
of the interconnect may be established.

A specific feature of the level set procedure, related to the void motion in a strong field,
was developed. The generating points of the interface curve, which were initially equally
or almost equally spaced, become located more and more nonuniformly as the time steps
proceed. After a number of steps, most of the generating points will be located in a fairly
small portion of the interface curve, while the long portions contain only a few generating
points. Therefore, the level set analysis requires an additional procedure to redistribute the
generating points in a “forced” equally spaced manner after each time step or after several
time steps. This redistribution is done using the spline technique.

Various simulations for void motions and evolutions were performed. These simulations
assume different initial configurations for the interface: ellipse, polygons with rounded
vertices (equilateral triangle and square), butterfly, and a long groove with rounded ends.
The simulation results include three-dimensional plots of the conductivity and voltage
distribution, the current configuration of the void, the values of the interface perimeter, the
area confined inside, and the total resistance of the interconnect at current time and the
graphs for the interface curvature and its derivatives vs the arclength, the voltage and its
derivatives vs the arclength, and the resulting normal velocity of the front.

Thus far, existing level set finite difference formulations consider the second order (in
space) governing equations where the speed function depends on the curvature only and is
independent of the derivatives of the curvature. However, in diffusion problems in materials
science, the normal velocity of the front is thought to be proportional to the second derivative
of the curvature with respect to the interface arclength. This yields a fourth-order equation
which is analyzed in this paper. The level set method is still applicable; however, the inte-
gration algorithm differs a great deal from that for a second-order equation. In particular,
it was established that for central differences in space and Runge–Kutta in time, the zero
level has to be computed and the distance function has to be reinitializedn times per each
time step, wheren is the order of the Runge–Kutta scheme.

The paper has the following structure: In Section 2 we describe the basic governing
equations for the void dynamics and evolution. Section 3 describes the numerical (finite
difference in space and Runge–Kutta 2 in time) algorithm for the solution of the governing
PDEs. The voltage distribution is found using a special multigrid solver which is described
in Section 4. Results of simulations are given in Section 5.
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2. MODELING SURFACE DIFFUSION AND ELECTROMIGRATION

2.1. Estimating the Curvature and Its Derivatives

Consider the time-dependent functionφ(x, y, t)whose zero level at any fixed timet yields
an instant configuration of the moving void interfaceφ(x, y) = 0. If the interface line0(t)
is specified, then the level functionφ(x, y, t)may be defined as a signed distance from the
given point(x, y) to the front line0(t). In this work only closed fronts are considered. The
normal velocityF of the moving front varies for different points of the interface. It depends
on the curvature of the front, its derivatives, the distribution of electric fields along the front,
and other factors. With these assumptions, the evolution of the level function is described
by Eq. (1.1) where the speed functionF is given by Eq. (1.2).

By integrating Eq. (1.1) we obtainφ(x, y, t), and then for any fixedt = t0, we solve
φ(x, y, t0) = 0 and obtain the interface0(t0)). The initial position of the front0(0) should
be specified. However, the boundary conditions for Eq. (1.1) are not needed, provided the
sizes of the computational box considerably exceed those of the domain inside the front.
At the internal points of the computational box we used central differences to approximate
the derivatives. At the bound lines of the box, we used one-sided differences.

Assume thatU (x, y) is the electric potential within the computational box,U− andU+ are
its values on the left and right vertical boundaries, respectively, andUn is the normal deriva-
tive on the boundary. The distributionU (x, y) is governed by a static (time-independent)
elliptic equation (1.5) with boundary conditionsUn = Uy = 0 along the horizontal bounds
of the rectangular computational box.U− andU+ are assumed to be constant;U+ −U−

is the external voltage applied to the interconnect.k(x, y) is a given function which rep-
resents the distribution of the material conductivity within the box. Usually, we assume
k = kout = constoutside the interface andk = kin = constinside. For a void that resides
inside the interconnect we havekout > 0, kin ≥ 0, andkoutÀ kin. Usually,kin is nonzero if
the underlayer’s conductivity is taken into account and averaged through the interconnect
thickness.

Since the front moves in time, Eq. (1.5) contains the time-varying coefficientk(x, y, t).
Thus, its solutionU (x, y) is time-dependent too. Normalizing the time unit, we set the
diffusion coefficientB to be equal to one, and Eqs. (1.1) and (1.2) become

φt + (Kss+ αUss)

√
φ2

x + φ2
y = 0. (2.1)

If φ is a distance function, then its gradient is of unit length (Eq. 1.3), and Eq. (2.1) is
simplified to

φt + Kss+ αUss= 0. (2.2)

Our goal is to expressK andKss in terms ofφ and the Cartesian components of its spatial
derivatives, and to expressUss in terms ofU, φ, and the Cartesian components of their
derivatives. For the rectangular grid, these Cartesian derivatives are more convenient to use
than the arclength derivatives. The above is accomplished via the following steps.

Estimating the absolute value of the distance function.First, let us describe the proce-
dure for establishing the level functionφ at any point in the plane when the interface contour
is specified. Assumeφ(x, y) is a signed distance between the fixed (but arbitrary) point
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(x, y) and a specified continuous closed curve. Assume also that this closed line is defined
parametrically in a two-dimensional region by the Cartesian componentsfx(r ) and fy(r ),
wherer is an arbitrary parameter, not necessarily the arclength. However, in particular,r
may be the arclength or proportional to the arclength. In some practical cases,fx(r ) and
fy(r ) are not specified explicitly, but the line is set by a sequence of individual points. Then,
the parametric functions may be restored by applying a spline technique. The obvious way
to search for a minimum distance between the given point(x, y) and the specified line is
as follows:

φ2(r ) = [ fx(r )− x]2+ [ fy(r )− y]2→ min

H(r )
def= [ fx(r )− x]

d fx
dr
+ [ fy(r )− y]

d fy
dr
= 0.

(2.3)

Estimating the distance by the Newton–Raphson iterative procedure.Equation (2.3) can
be solved numerically for the unknownr by applying the Newton–Raphson iterative proce-
dure. Assume that thenth approximation forr is already found. Then the next approximation
for r is defined as

r (n+1) = r (n) − H
[
r (n)
]/

H ′
[
r (n)
]
,

where

H ′(r ) =
(

d fx
dr

)2

+
(

d fy
dr

)2

+ [ fx(r )− x]
d2 fx

dr2
+ [ fy(r )− y]

d2 fy

dr2
. (2.4)

Estimating the distance by the golden section method.The Newton method converges
rapidly (quadratically), but if the initial approximation is not properly chosen, it does not
converge at all. In these cases we apply the standardgolden sectionmethod to establish the
distance from the given grid point to the interface line. The golden section always converges,
but it converges slowly (linearly). The functionf (t)whose minimum is sought, can be either
an unsigned distance or a square of the distance. Now assume that the proper value ofr
is established. Without knowing the sign, the level functionφ(x, y) can be defined by Eq.
(2.3).

Establishing the sign of the distance function.To establish the sign ofφ, we have to
discover whether the given point(x, y) is located inside or outside the front. For this purpose,
consider the distance vectorN (connecting the given point in the plane to the nearest point
on the line), the outward normal vectorn, and the tangent vectort, as described in Fig. 1.
Their components are

N( fx − x, fy − y); t
(

d fx
dr
,

d fy
dr

)
; n

(
d fy
dr
,

d fx
dr

)
. (2.5)

Vectorst andn are not necessarily of unit length. Equation (2.5) expresses the fact that
N · t = 0, i.e., N is normal tot. Then, it follows that the distance vectorN is collinear
with the normal vectorn If N · n > 0, their directions coincide, and this means that the
considered point(x, y) is located inside the front. In this case, the distance functionφ

should be negative. ForN · n < 0, φ is positive,

signφ = −sign(N · n) = sign

[
( fy − y)

d fx
dr
− ( fx − x)

d fx
dr

]
. (2.6)
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FIG. 1. Establishing the distance function sign.

Level line curvature. For an arbitrary functionφ(x, y), which does not need to be a
distance function, the components of the unit normal to the level line are

nx = φx√
φ2

x + φ2
y

, ny = φy√
φ2

x + φ2
y

. (2.7)

The curvature is a divergence of an outward unit normal [8]:

K = ∂nx

∂x
+ ∂ny

∂y
= ∇ · n = φxxφ

2
y − 2φxyφxφy + φyyφ

2
x(

φ2
x + φ2

y

)3/2 . (2.8)

We assume thatφ(x, y) is a distance function. Then identity (1.3) is valid, and Eq. (2.8) is
simplified to

K (x, y) = φxx + φyy = ∇2φ, (2.9)

i.e., the level line curvature is equal to the Laplacian of the distance function. Although
relationships for the curvature (2.8) and (2.9) are analytically equivalent, provided the
level function coincides with the distance, they lead to different numerical schemes. These
schemes are both conditionally stable, but the stability constraints (relations between the
cell size in thexy plane and the time step) prove to be different. Equation (2.9) requires
the second derivatives with respect to one Cartesian coordinate only. Equation (2.8) utilizes,
in addition to this data, the first derivatives and the mixed second derivative. Unfortunately,
the scheme based on the simplified linear differential relation (2.9) between the curvature
and the distance function required a smaller time step value in order to allow the numerical
solution to proceed stably, and therefore it is not necessarily recommended for practical
use. However, the information about the unit length of the gradient vector can be introduced
into Eq. (2.8), and this yields

K = φxxφ
2
y − 2φxyφxφy + φyyφ

2
x. (2.10)



324 AVERBUCH ET AL.

Note that the stability constraints of the numerical schemes, approximating the curvature
by second-order differences using Eq. (2.8) and Eq. (2.10), are the same.

Arclength derivative of voltage.We now derive the expression for the derivatives of an
arbitrary functionU (for example, the distribution of electric potential) with respect to the
arclength of the level line. The first derivative is

Us = −Uxφy +Uyφx. (2.11)

By using Eq. (2.8), the second derivative becomes

Uss= −∂Us

∂x
φy + ∂Us

∂y
φx = Uxxφ

2
y − 2Uxyφxφy +Uyyφ

2
x − KUn. (2.12)

Equation (2.12) may be rewritten as

Uss+Unn+ KUn = ∇2U

Un = Uxφx +Uyφy (2.13)

Unn = Uxxφ
2
x + 2Uxyφxφy +Uyyφ

2
y,

whereUn andUnn are the first and second derivatives with respect to the distance in the
normal direction.

Arclength derivative of curvature.So far,U (x, y) is an arbitrary function. In particular,
Eq. (2.13) can be applied to the curvature:

Kss+ Knn+ K Kn = ∇2K . (2.14)

In order to simplify Eq. (2.14), we derive the relation between the curvatureK and its
normal derivativeKn. For this purpose we differentiate Eq. (1.3) twice with respect tox
andy: {

φxφxx + φyφxy = 0

φxφxy+ φyφyy = 0

{
φ2

xx + φxφxxx+ φ2
xy+ φyφxxy = 0

φ2
xy+ φxφxyy+ φ2

yy+ φyφyyy = 0.
(2.15)

It follows from (2.15) that

φxxφyy = φ2
xy. (2.16)

In other words, the Jacobian forφx andφy vanishes, since these two functions are dependent
through Eq. (1.3). Introducing (2.16) and (2.9) into the second set of Eq. (2.15), we obtain:

φxxK + ∂φxx

∂n
= 0; φyyK + ∂φyy

∂n
= 0. (2.17)

Set (2.17) yields

K 2+ Kn = 0. (2.18)
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Now the second normal derivative of the curvature can be easily obtained:

Knn = ∂Kn

∂n
= − ∂

∂n
K 2 = −2K Kn = 2K 3. (2.19)

Insertion of (2.18) and (2.19) into (2.14) yields

Kss= ∇2K − K 3. (2.20)

Note that the stability constraint for the difference scheme that uses Eq. (2.13) allows a
larger step value than those that use Eq. (2.20). Therefore, the simplified relation (2.20) for
the second derivative of curvature with respect to the arclength is not necessarily recom-
mended for the numerical implementation.

Derivation of the two-dimensional electrostatic equation.We consider a conducting
strip made of a thin metal film, attached to a strip of nonzero conductivity substrate. The
metal film may be continuous or it may be made of conducting patches with voids in
between. We allow the metal film and substrate to have variable thickness. In the present
formulation we neglect the interface resistance. The strip is attached to electrodes at its
ends. We may want to compute the total resistance of the strip as well as the local field
strength which determines the resulting electromigration. This is a more realistic model
than the model based on the assumption of a zero conductivity substrate. It also allows us
to consider the behavior of a metal film with varying effective thickness at no extra cost.
More details are given in the Appendix.

The three-dimensional problem.Ohm’s law impliesj = σE = −σ∇3φ, wherej is the
electric current density vector,E is the electric field vector,φ is the electric potential, and
σ is the material conductivity. For steady fields, Maxwell’s equations with vanishing space
charge give

∇3 · j = 0, where ∇3 =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
. (2.21)

Hence

∇3 · (σ∇3φ) = 0. (2.22)

At all external (lateral) boundaries there is no flux in the direction of the normal,n, so that
n · j = 0, and using (1.1) one gets

n · ∇3φ = 0. (2.23)

The conditions (2.23), together with values of the potential specified at the two ends of the
strip and the continuity and jump conditions at the interface, constitute boundary condi-
tions for Eq. (2.22) in the two layers. Thus the three-dimensional potential can be found,
in principle, as the solution of a well-posed three-dimensional boundary value problem.
However, such a solution can be very expensive to get in the present geometry, in particular
as singularities in the solution will appear at sharp geometrical corners at crystal bound-
aries or voids, requiring high resolution or complicated integration formulas. To avoid this
(probably unrealistic) behaviour of the solution and to avoid solving three-dimensional
problems many times, as required by the time development of the process, we proceed with
an approximate approach suggested by (singular) perturbation theory.
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The two-dimensional equation.We assume thatφ andσ change over a characteristic
length scaleL in the horizontal directionsx and y but over a scaleH in the vertical.
Furthermore we assume thatε = H/L ¿ 1. Using scaled variables in Eq. (2.22),

(X,Y, Z) = (x/L , y/L , z/H), (2.24)

we get

ε2∇2(σ∇2φ)+ ∂

∂Z

(
σ
∂φ

∂Z

)
= 0, where ∇2 =

(
∂

∂X
,
∂

∂Y

)
. (2.25)

Singular perturbation analysis considers an expansion

φ = φ0+ ε2φ1+ ε4φ2+ · · · , (2.26)

where theφk are functions of order 0(1) inε.
Substitution of Eq. (2.26) in Eq. (2.25) gives relations for the functionsφk by grouping

terms according to their order inε and equating each group to zero. The zeroth-order term
gives ∂

2φ0
∂Z2 = 0; thusφ0 is a linear function inz for everyx andy, while taking into account

(2.23) kills off thez dependence, so that

φ0 = φ0(X,Y). (2.27)

Thus at this stageφ0 is an arbitrary function of the horizontal coordinatesX andY. The
first-order equation and the boundary conditions inZ result ultimately in the approximate
two-dimensional equation forφ0 (see Appendix A)

∇2(h1σ1+ h2σ2)∇2φ
0 = 0, (2.28)

whereh1, σ1 andh2, σ2 are, respectively, the heights and conductivities of the two layers
under consideration. This equation is solved with boundary conditions in the (X,Y) plane.

Note that the approximate independence of the potentialφ on the Z coordinate also
justifies the two-dimensional approach for the electromigration equation. This behaviour
is a consequence of the small aspect ratio assumption and the normal derivative boundary
conditions (2.23), where one must also use a small slope assumption.

Governing equations.Finally, we collect all the governing equations for the void inter-
face evolution under the surface diffusion and electromigration:

φt + Kss+ αUss= 0

∇ · k∇U = 0

}
Partial differential
equations

K = φxxφ
2
y − 2φxyφxφy + φyyφ

2
x = ∇2φ

Kss= ∇2K − K Kn − Knn = ∇2K − K 3

Uss= ∇2U − KUn −Unn

Kn = ∇K · ∇φ = −K 2

Un = ∇U · ∇φ
Knn = Kxxφ

2
x + Kxyφxφy + Kyyφ

2
y = 2K 3

Unn = Uxxφ
2
x + 2Uxyφxφy +Uyyφ

2
y.



Algebraic
relations

(2.29)
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In particular, if we take into consideration only the surface diffusion and neglect the
electromigration, set (2.29) is simplified to become

φt + Kss= 0. (2.30)

In this case, the only possible equilibrium configuration of the front is circular. Indeed,
assume the equilibrium takes place:φt = 0. ThenKss also vanishes, andK (s) = as+ b.
Due to continuity of the curvature,K (0) = K (smax) wheresmax is the length of the closed
interface. Therefore,a = 0, andK = const. The constant curvature front is circular and
K = 1/radius. For the front evolution governed by Eqs. (2.29) and (2.30), the areaA inside
the interface remains constant:

d A

dt
=
∮

F ds=
∮
(Kss+ αUss) ds= Ks + αUs|smax

0 = 0. (2.31)

This integral vanishes because of the continuity ofKs andUs. However, the length of the
interface does not remain constant. For the governing Eq. (2.30), the perimeter decreases as
the arbitrary initial shape tends to a circle while keeping the area of the void constant. The
constant area inside the void is in agreement with the material conservation law. However,
for some other types of governing equations, the area which is confined by the front is no
longer constant. Consider, for example, the second-order equation

φt − K = 0 or φt −∇2φ = 0, (2.32)

where the normal speed of the front coincides with the curvature up to the sign. The rate of
change of the area is

d A

dt
=
∮

F(K ) ds= −
∮

K ds= −2π. (2.33)

Consequently, the confined area decreases uniformly, and inA0/(2π)normalized time units,
the front collapses to a point. An example of the numerical simulation of such motion is
presented in Fig. 2.

Equation (2.32) is solved by finite differences in space and Runge–Kutta 2 in time. Since
the governing equation is of second order in space, the time step is limited, because of
stability reasons, to being

1t = λh2, h = min(1x,1y). (2.34)

We setλ = 1/8 and we obtained a stable scheme. The initial front is elliptic with semi-axes
1 and 2. Thus, the initial area is 2π , and it should collapse after one time unit. The size of the
computational box is 8× 8, and the space grid is 60× 60 nodes (or 59× 59 intervals). The
spatial resolution ish = 8/59= 0.1356. The time step is1t = 2.298· 10−3. The internal
phase should completely disappear after 435 steps, and it really does. Due to the small size
of the resulting area confined by the front, it is impossible to perform further computations.
In fact, after 430 steps only a few grid points have been left inside the front. This leads to
considerable error in the estimation of the curvature. The derivatives of the curvature are
not needed to solve the governing equations; they are calculated and plotted as a reference
source. As we see, the eccentricity of the front decreases as it evolves. During its collapse,
the initial elliptic front tends to a circle.
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FIG. 2. Collapse of elliptic front under the second-order elliptic equation.

2.2. Variation of Interface Length

In this section we study the rate of change of the front length by considering the second-
(2.32) and fourth-(2.30) order equations. Sethian [11] introduced the time-independent
parameterp, related to the arclengths= s(p, t). For example, the arclength of the initial
front or the arclength of the reference configuration may be used as parameterp. He
considered the metricg(p, t) = ds/dp and derived the evolution equations for the metric
and for the curvature:

gt = K Fg (2.35)

Kt = −1

g

∂

∂p

(
1

g

∂F

∂p

)
− K 2F. (2.36)

Note that

∂

∂s
= ∂

∂p

dp

ds
= 1

g(p, t)
· ∂
∂p
. (2.37)
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Then Eq. (2.36) may be rewritten in terms of the arclengths as

Kt = −Fss− K 2F, (2.38)

where both curvature and speed function depend on the present arclength coordinate. Equa-
tion (2.35) yields the perimeter variation rule:

d

dt

∮
ds= d

dt

∮
g(p, t) dp=

∮
gt (p, t) dp=

∮
K Fg dp=

∮
K F ds. (2.39)

Now we apply this rule to two distinct speed functions of the interface.

1. The speed function is proportional to the curvature.

F = −AK, A = const, A > 0.
d

dt

∮
ds= −A

∮
K 2 ds. (2.40)

The perimeter decreases for all time.
2. The speed function is proportional to the second derivative of the curvature with

respect to the front arclength.

F = BKss, B = const, B > 0

d

dt

∮
ds= B

∮
KssK ds= B

∮
K dKs = −B

∮
Ks dK = −B

∮
K 2

s ds. (2.41)

The perimeter decreases, provided the curvature is not constant along the interface. However,
in the previous section it was proved that for such a speed function the confined area remains
invariant. This means that any initial shape of the front tends to a circle, whose curvature
K = const.

Next we derive the second-order terms for the interface length variation. We start with
two general remarks.

Remark 1: transport theorem.Consider an arbitrary functionH = H(s, t) which de-
pends on time and the arclength coordinate of the front. Note that this coordinate is time-
dependent by itself.ddt

∮
H(s, t) dscalculates the time derivative of the integral ofH over

the changing interface contour. So far, we cannot interchange the time differentiation and
integration operations because the integration path depends on time. To make such a com-
mutation possible, we switch to the time-independent parameterp defined by the metricg,

d

dt

∮
H(s, t) ds= d

dt

∮
H(p, t)

ds

dp
dp= d

dt

∮
H(p, t)g(p, t) dp

=
∮

Ht (p, t) g(p, t) dp+
∮

H(p, t)gt (p, t) dp, (2.42)

wheregt is defined by the metric evolution rule (2.35). Therefore

d

dt

∮
H ds=

∮
Ht ds+

∮
H K F ds. (2.43)

Equation (2.43) is an analog of the Reynolds Transport Theorem in continuum mechanics
[13].
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Remark 2: commutation rule.Consider a mixed space–time derivative and commute
the order of differentiation:

Hst = ∂Hs

∂t
= ∂

∂t

∂H

∂s
= ∂

∂t

∂H/∂p

∂s/∂p
= ∂

∂t

Hp

g
= Hptg− Hpgt

g2

= Htp − HpK F

g
= 1

g

∂Ht

∂p
− K F

g

∂H

∂p
= Hts − K F Hs. (2.44)

Note that the order interchange for the differentiation with mixed derivatives is allowed for
independent variables only.

We return to our discussion on second-order terms. Due to Eq. (2.39),

d2

dt2

∮
ds= d

dt

∮
K F ds=

∮
Kt F ds+

∮
K Ft ds+

∮
K 2F2 ds, (2.45)

where rule (2.43) is used.Kt is defined by the curvature evolution law (2.38). Thus, we
obtain

d2

dt2

∮
ds= −

∮
F Fssds+

∮
K Ft ds=

∮
F2

s ds+
∮

K Ft ds. (2.46)

Now we consider two specific cases for the front normal velocityF .

1. The velocity is proportional to the curvature, Eq. (2.40):

d2

dt2

∮
ds= 2A2

∮
K 2

s ds− A2
∮

K 4 ds. (2.47)

2. The velocity is proportional to the second derivative of the curvature, Eq. (2.41):

d

dt2

∮
ds= B2

∮
K 2

sssds+ B
∮

K Ksst ds. (2.48)

With the use of the commutation rule (2.44), Eq. (2.48) becomes

d2

dt2

∮
ds= 2B2

∮
K 2

sssds− 2B2
∮

K 2K 2
ssds− B2/3

∮
K 4

s ds. (2.49)

By expanding the interface length in a Taylor series and neglecting the high-order terms,∮
ds(t +1t) =

∮
ds+ d

dt

∮
ds1t + d2

dt2

∮
ds
1t2

2
+ O(1t3). (2.50)

Various computer simulations were carried out for both second-order and fourth-order
governing equations to analyze the variation of the interface length. The linear term in
Eq. (2.50) appeared to have a reasonable degree of accuracy in the numerical simulations.
However, this was not true for the second-order term. “Central differences in space and
Runge–Kutta 2 in time” was the chosen scheme. The accuracy of the central differences is
of second order. The time step was taken to be1 = λh2 for the second-order governing
equation and1t = λh4 for the fourth-order equation, whereh = min(1x,1y) is the reso-
lution of the spatial grid. This scheme is a good representative for studying the dynamics of
moving fronts, but its accuracy is not sufficient to estimate the second-order term in (2.50).
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3. FINITE DIFFERENCE FORMULATION

3.1. Runge–Kutta Integration Scheme

At this point our goal is to solve the set (2.29) numerically for a specified initial interface
of the level function and for specified boundary conditions for the voltage. The principal
time-dependent equation (2.2) describes the evolution of the level function. It is discretized
by finite differences in space and by Runge–Kutta in time. The auxiliary equation (1.5)
is time-independent since it does not include time derivatives. Recall, however, that the
electrical conductivityk(x, y) varies in time through the front motion. Althoughk(x, y) is
time-dependent, this is a known preset function at any fixed time. The elliptic equation (1.5)
is solved repeatedly by finite differences. The difference scheme is discussed in Section 3.5.
For now we assume that the nodal values of the voltageU are established at all times.
Turning back to Eq. (2.2),U (x, y, t) should be considered as a given external function.
According to Eq. (2.13),Uss requires evaluation of the first and second derivatives ofU and
φ. Those are calculated by central differences (applying the standard formulas of second-
order accuracy), except for the points on the contour of the computational box, where
the one-sided differences are used. The second derivative of the curvature with respect to
arclengthKss includes the fourth-order derivatives of the level functionφ. However, due to
numerical considerations, it is more convenient first to calculate the curvatureK by applying
second differences to the level function, and then to establishKss. And this is accomplished
by applying second differences to the curvature.

Once the differential operators in the space(x, y)have been replaced by the corresponding
difference operators, the evolution PDE that is described by Eq. (2.2) is transformed into a
set of ODEs:

dφi

dt
= fi (φ,U). (3.1)

Each equation of the set (3.1) corresponds to a specific nodei of the grid. Vectorsφ andU
in (3.1) represent the node values of the level function and voltage, respectively, according
to the difference operators. Recall thatU = U(φ), and therefore (3.1) may be presented as
dφi /dt = fi (φ). This is a standard set of ODEs, and Runge–Kutta integration schemes are
appropriate. The schemes of order 2, 3, and 4 were tested and produced the proper results.

Note that the distance functionφ has to be reinitializedn times and the voltage distribution
PDE (1.5) has to be solvedn times per time step, wheren is the order of the Runge–Kutta
scheme. Therefore, the high-order schemes are computationally expensive. On the other
hand, a small time step1t = λh4 is dictated by the stability requirements. The spatial
resolutionh = min(1x,1y) should be sufficiently small to provide accurate calculations
for the fourth derivatives of the moderately varying function. Consequently,1t is usually
small enough that even Runge–Kutta order 2 yields an acceptable accuracy. Therefore, the
second-order scheme that is being used is:

k1 = f(φ, t); k2 = f (φ+1tk1); φ(t +1t) = φ+ 1t

2
(k1+ k2). (3.2)

This scheme is accurate to order1t2, and the discrepancy (error generated in one step) is
proportional to1t3. Numerical tests revealed thatλ should not exceed 1/8, or else stability
is lost. It is interesting to note that this critical value ofλ proved to be approximately the
same for any order of Runge–Kutta scheme.
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Below we present the computational steps to integrate the evolution equation (2.2).
Although the algorithm assumes a Runge–Kutta order 2 integration scheme, the same steps
can be also applied to the Runge–Kutta scheme of any order, provided that the obvious
modifications are inserted.

1. The input data is a set of generating points(x, y) which describe the initial configu-
ration of the interface curve. These points do not necessarily coincide with the rectangular
grid points.

2. Apply the spline technique to restore the analytic parametric relationships for the
interface curve:x = fx(r ), y = fy(r ); 0≤ r ≤ 1.

3. If necessary, redistribute the generating points in a uniform manner, such that the
arclength between any two successive points is the same.

4. Following Eqs. (2.3–2.6), we establish the distance function at each node. We use
the Newton iterative procedure to solve the nonlinear equation and thegolden section
minimization technique when the Newton procedure fails to converge.

5. Apply the difference approximations and calculate at each node the derivatives of
the distance function and the curvature of the level line.

6. Apply the difference approximations and calculate at each node the derivatives of
the curvatureKs andKss with respect to the arclength of the level line.

7. Using the node values of the distance function, calculate for these points the electrical
conductivity. In other words, if the sign of the distance function is negative, then we are
inside the void. If it is positive, we are outside the void and the conductivity of the material
should be used.

8. Solve the elliptic equation (1.5) for the appropriate boundary conditions and obtain
the nodal values of the voltage distribution.

9. Estimate the total resistance of the interconnect line, Eq. (3.23).
10. Apply the difference approximations and use Eqs. (2.11) and (2.13) to calculate the

node values of the voltage derivativesUs andUss with respect to the arclength of the level
line.

11. CombineKss with αUss and reverse the sign, producing the node values fork1 in the
Runge–Kutta scheme, Eq. (3.2).

12. Calculate the updated node values of the level function:φupd = φ+1tk1 .
13. Find the interface curve points of the updated level function by solving the equation

φupd(x, y) = 0 numerically. The previous configuration of the front is used as an initial
approximation.

14. Using the set of points obtained in the previous item, repeat steps 2–10 for the updated
level function.

15. CombineKss with αUss and reverse the sign, producing the node values ofk2 in the
Runge–Kutta scheme, Eq. (3.2).

16. Calculate the node values of the level function att +1t by applying the last formula
of set (3.2). Now we haveφ = φ(t +1t).

17. Solve the equationφ(x, y) = 0 numerically and find the interface curve points of
the level function.

18. Apply the polynomial interpolation technique, calculate the values of the curvature
and voltage and their arclength derivatives up to the second order at the interface points.

19. In the next time step, repeat steps 2–18.

Remark. Steps 13 and 17 require solving the equationφ(x, y) = 0, i.e., finding the set
of points(x, y) in the plane where the level function vanishes. Assume we do know this
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set approximately. In other words, we have at our disposal a set of points(x, y) which
generates a closed curve. On this set of points the level function does not necessarily vanish
(φ(x, y) 6= 0), but it assumes small absolute values|φ(x, y)| compared with the size of
the computational box. Consider an individual point(x, y). Our goal is to find the updated
values ofx andy where the level function vanishes. Expand the level function into a Taylor
series while neglecting the high-order terms:

φ(x +1x, y+1y) = φ(x, y)+ φx(x, y) ·1x + φy(x, y) ·1y ≈ 0. (3.3)

We search for the point of the zero profile, which is the closest to the point(x, y) under
consideration. Therefore, we move in the gradient direction for the negative values of the
level function, and move in the counter-gradient direction for the positive values

1x = wφx(x, y) 1y = wφy(x, y), (3.4)

where the sign ofw should be opposite to that ofφ(x, y). Substitute (3.4) into (3.3) and take
into account the unit gradient length of the distance function. We obtainw = −φ(x, y).
This leads to an iterative procedure which yields a point of the zero profile:

x(n+1) = x(n) − φ[x(n), y(n)
] · φx

[
x(n), y(n)

]
y(n+1) = y(n) − φ[x(n), y(n)

] · φy
[
x(n), y(n)

]
.

(3.5)

The procedure requires a bipolynomial interpolation to establish the values of the level
function and its derivatives at an arbitrary nongrid point.

3.2. Forward and Backward Difference Approximation for the Level Function Derivatives

When Eq. (2.2) is solved numerically, the boundaries of the rectangular computational
box should be far away from the front contour (as compared to the size of the area confined by
the front). Otherwise, closeness to the boundary will affect the front motion. And conversely,
if the void interface is far away from the box bounds, the boundary conditions do not matter.
However, this does not mean that any boundary conditions can be applied. We realized that
improper boundary conditions yield poor results, and we believe that for the closed front
evolution problem, the boundary conditions should have no influence. Therefore, we need
to estimate the spatial derivatives of the level function not only at the internal points of the
box but also on the box contour. Central differences cannot be applied to the contour points
since they require ghost values outside the box. These values, in turn, cannot be established
because of the lack of boundary conditions. Therefore, we use forward and backward
differences. As we have already mentioned, although the governing equation (2.2) is of
fourth order in space, we do not approximate the fourth-order derivatives by differences.
Instead, we apply the second differences twice. Recall that the errors of the central difference
approximations adopted are of orderh2. Consequently, we have to establish the forward and
backward formulas with the same order of accuracy. For an equally spaced gridx0, x1, x2, x3,
the first and second derivative approximations are

f ′(x0) = −3 f0+ 4 f1− f2

21x
+ O(1x2)

(3.6)
f ′′(x0) = 2 f0− 5 f1+ 4 f2− f3

1x2
+ O(1x2),
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where fi = f (xi )i = 0, . . . ,3. To derive the formula for the mixed second derivative, we
apply Eq. (3.6) repeatedly. For the corner points, we apply one-sided differences only. For
the noncorner boundary points, we apply central differences in the direction of the contour
line, and one-sided differences for the normal direction. In particular, the mixed second
derivative is obtained by applying the central and one-sided difference sequentially.

3.3. Far Field and Near Field Considerations

Recall that using the Runge–Kutta 2 integration scheme, we reinitialize the level function
at all grid points twice per each time step. For this, we use the values of the level function
obtained by integrating the governing equation to obtain the closed zero line:

φ(x, y) = 0. (3.7)

Then at each grid point, the level function is reassigned as a signed distance from the
given point to the interface line. We solve the nonlinear equation (3.7) to estimate the
new locations for the generating points of the interface curve. Using their old locations as
the initial approximations, we proceed in the gradient or counter-gradient direction until
Eq. (3.7) is satisfied with a required reasonable degree of accuracy. For this, the non-node
values of the level function at the intergrid points are necessary. This, in turn, requires the
two-dimensional polynomial interpolation ofφ(x, y). As mentioned above, in this work
fifth-order polynomials are used, which means 36 nodal values are required to estimate a
non-nodal value. In each of two Cartesian directions, we need to consider three grid points
to the left and three grid points to the right from the intergrid point under consideration.
This requirement means that the most remote grid point to be considered is located at the
distance

db = ±4
√
1x2+1y2 (3.8)

from the interface line, because three grid points to the left or to the right means up to
four intervals in each direction. With the interpolation scheme adopted, other grid values
provide no contribution to the interface line location, and therefore the normal front velocity
F = Kss+ αUss should be established for the grid points within a relatively narrow band
region inside and outside the interface line, with a front velocity bandwidth of

−db ≤ φ(x, y) ≤ db. (3.9)

Thus, the second derivative of the curvature and the voltage with respect to the arclength
should be calculated within the region bounded by inequality (3.9). This means that the
curvature and the voltage should be calculated through a larger region that is one grid
interval wider in each direction so that the curvature and voltage bandwidth are defined by

−5db

4
≤ φ(x, y) ≤ 5db

4
. (3.10)

The implicit multigrid computational algorithm yields the voltage distribution at all grid
points, but as we see, not all of them are necessary. Since the numerical estimation of the
curvature requires first and second derivatives of the distance function, Eq. (3.9) yields the
bandwidth for the distance function calculation, giving a distance and function bandwidth of

−3db

2
≤ φ(x, y) ≤ 3db

2
. (3.11)
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Note that the bandwidth for the region, where the distance function should be calculated,
is defined via the distance function itself. Thus, if at each time step we recalculate or the
distance function remains unchanged according to condition (3.11) alone, then the distance
function will be updated only within theinitial near field region. The near field location will
not move. The grid points that belong initially to the far field region will remain outside the
near band forever, and the front motion will be confined.

To avoid such a “self-clinching loop,” we recalculate the distance function within the
near field (Eq. 3.11) twice per each time step: half band inside the interface line and half
band outside. However, once perNf time steps the level function is updated for all grid
points of the entire rectangular computational domain.

Due to the severe stability constraints of the explicit integration scheme for the fourth-
order governing equation (2.29), the time step is small and proportional to the fourth power
of the cell size. Consequently, the change in the position of the interface line during one
time step is pretty small compared to the cell size. The generating points of the interface line
at the next time step are located in close proximity to their previous positions. Therefore,
Nf = 20 usually suffices.

Since the boundary points of the computational box should always be far away from the
void interface, those points belong to the far field region. Thus, with the use of the “far field–
near field” concept, estimating the derivatives at the boundaries of the computational box
(using the one-sided differences) becomes unnecessary. However, we still use the one-sided
difference approximations for the derivatives, in order to calculate the electric resistance of
the interconnect line. Estimation of the total resistance is described below.

3.4. The Interface Perimeter and the Confined Area

Assume the front is given by two parametric relationshipsfx(r ) and fy(r ), which may
be specified analytically or result from a spline interpolation. Lets be the arclength andr
an arbitrary parameter. To obtain the area confined by a closed front, we pass from the area
integral to the integral over the interface length:

A =
∫∫

A

d A= 1

2

∫
r

(
fx

d fy
dr
− fy

d fx
dr

)
dr. (3.12)

0≤ r ≤ 1 is a normalized parameter which defines the limits of integration in (3.12) and
(3.13). The interface length

smax=
∮

ds=
∫
r

ds

dr
dr =

∫
r

√
(d fx/dr)2+ (d fy/dr)2 dr. (3.13)

When fx(r ) and fy(r ) are given by cubic splines their derivatives are easily calculated.

3.5. Distribution of Electric Potential

The voltage distribution is a static boundary value problem which is described by Eq. (1.5).
We consider the case in whichk = kin = constinside the closed front andk = kout = const
outside the front. Since the distance function is negative inside the front and positive outside,
we getk = kin for φ < 0 andk = kout for φ > 0. Formally, Eq. (1.5) requires the existence
of derivativeskx andky. For this purpose, we smooth out the conductivity distribution by a
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hyperbolic tangent law,

k(x, y) = kout + kin

2
+ kout − kin

2
tanhβφ(x, y), (3.14)

whereβ is a constant adjusting parameter. In this work, we use relatively large values of
β, so thatk(x, y) approacheskin or kout even at a small distance from the interface (rapid
change). Once we know the grid values of the distance function, we also know the grid
values of the conductivity.

The boundary conditions are∂U/∂y = 0 at the horizontal boundaries of the computa-
tional box, and the voltage is preset along the vertical boundaries:U = U− = conston
the left boundary andU = U+ = conston the right. We discretize Eq. (1.5) by central
differences with second-order accuracy:

∂

∂x

(
k
∂U

∂x

)
= ki+1/2, j Ui+1, j −

(
ki+1/2, j + ki−1/2, j

)
Ui j + ki−1/2, j Ui−1, j

1x2

∂

∂y

(
k
∂U

∂y

)
= ki, j+1/2Ui, j+1−

(
ki, j+1/2+ ki, j−1/2

)
Ui j + ki, j−1/2Ui, j−1

1y2
.

(3.15)

To calculate the local truncation error we expandk(x, y) andU (x, y) in (3.15) into Tay-
lor series in the neighborhood of the central node(i, j ) while taking into consideration
Eq. (1.5):

Eh =
(
∂3k

∂x3

∂U

∂x
+ 3

∂2k

∂x2

∂2U

∂x2
+ 4

∂k

∂x

∂3U

∂x3
+ 2k

∂4U

∂x4

)
1x2

24

+
(
∂3k

∂y3

∂U

∂y
+ 3

∂2k

∂y2

∂2U

∂y2
+ 4

∂k

∂y

∂3U

∂y3
+ 2k

∂4U

∂y4

)
1y2

24
. (3.16)

The disadvantage of scheme (3.15) is that it requires the conductivity values in the middle
of the interval between grid points:ki±1/2, j andki, j±1/2. These values may be replaced by
averaging two neighbor grid points’ conductivities:

kl+1/2 = kl + kl+1

2
+ O(h2). (3.17)

Generally, the replacement in Eq. (3.17) cannot be applied for the central differences, as
the second differences areO(h2) before division byh2. However, for this case such a
replacement is justified due to the symmetry properties of the scheme (3.15), as shown
below. Therefore, the difference equation becomes

1

1x2
[(ki+1, j + ki j )Ui+1, j − (ki+1, j + 2ki j + ki−1, j )Ui j + (ki j + ki−1, j )Ui−1, j ] + 1

1y2

× [(ki, j+1+ ki j )Ui, j+1− (ki, j+1+ 2ki j + ki, j−1)Ui j + (ki j + ki, j−1)Ui, j−1] = 0. (3.18)

To prove the validity of substitution (3.17), we estimate the local truncation error of the
difference scheme (3.18)

Ei =
(
∂3k

∂x3

∂U

∂x
+ 3

∂2k

∂x2

∂2U

∂x2
+ 2

∂k

∂x

∂3U

∂x3
+ k

∂4U

∂x4

)
1x2

12

+
(

2
∂3k

∂y3

∂U

∂y
+ 3

∂2k

∂y2

∂2U

∂y2
+ 2

∂k

∂y

∂3U

∂y3
+ k

∂4U

∂y4

)
1y2

12
. (3.19)
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We see that the local truncation error isO(h2), i.e., the error order is the same as in the
original scheme (3.15) before substitution (3.17) was applied. With a rearrangement of
terms, Eq. (3.18) becomes

ki+1, j + ki j

1x2
Ui+1, j + ki j + ki−1, j

1x2
Ui−1, j + ki, j+1+ ki j

1y2
Ui, j+1+ ki j + ki, j−1

1y2
Ui, j−1

−
(

ki+1, j + 2ki j + ki−1, j

1x2
+ ki, j+1+ 2ki j + ki, j−1

1y2

)
Ui j = 0. (3.20)

We now consider the derivative boundary conditions. Assume thatj = 0 and j = M are
the horizontal boundaries of the computational box. If we require∂U/∂y = 0 at j = 0 and
j = M , the standard central difference yields the ghost values

Ui,−1 = Ui,0, Ui,M+1 = Ui M , (3.21)

where the boundary is assumed to pass midway between grid points. The boundary condition
(3.21) is substituted into the difference equation (3.20) so that the ghost valuesUi,−1 and
Ui,M+1 are eliminated.

Let i = 0 andi = N be vertical boundaries of the computational box. Then, the Dirichlet
boundary conditions are

U0 j = U−, UN j = U+. (3.22)

By solving set (3.20) with boundary conditions (3.21) and (3.22), we obtain the voltage
at each node. The coefficient matrix is a band matrix with a half-band of widthN + 1 or
M + 1. However, the band is sparse: each row contains only five nonzero coefficients. The
linear set is solved using an efficient multigrid iterative procedure. Once the grid values of
the voltage are established, the estimated total electric resistance of the interconnect is

R= U+ −U−

kout
∫

h
∂U
∂x dy

, (3.23)

whereU+ −U− is the external voltage applied to the interconnect;kout is the specific
electric conductivity of the material outside the front. The integral can be taken along any
line x = const, located entirely outside the interface. We use both left and right vertical
bounds. The results, of course, should be the same. The coincidence ofU+ −U− along
any line is only an indication of some kind of conservation form of the numerical scheme.
h is the length of the integration line, from the lower bound to the upper bound of the
computational box. The resistance varies as the front evolves and it is independent of the
applied voltage. We use Ohm’s law to calculate the resistance.

Three-dimensional plots which describe numerical estimations for the voltage distribution
are presented in Figs. 3 and 4.

Different ratioskin = kout were considered. Forkin À kout we deal with a metallic island
inside the front, surrounded by a fairly poor conductor. Another case,kin ¿ kout, describes
a void inside a good metallic conductor. Even for a void,kin0, due to the underlayer’s
conductivity. A grid of size 100× 100 was used for the examples.

Figure 3 presents the distribution of the conductivityk and voltageU for the circular
irregularity. The circular superconductive island is considered in Fig. 3a, the circular void
in Fig. 3b. Voltage inside the island and along its boundary is almost constant.
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FIG. 3. Distribution of electric potential through the rectangular plate with a circular irregularity: (a) circular
superconductive island; (b) circular void.

FIG. 4. Distribution of electric potential through the rectangular plate with a triangular irregularity:
(a) triangular superconductive island; (b) triangular void.
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Triangular island and triangular void topologies are presented in Figs. 4a and 4b, respec-
tively. The triangle is equilateral, and its axis of symmetry coincides with the direction of
the electric field at infinity (far away from the triangle).

4. ELLIPTIC BOUNDARY VALUE SOLVER

The most computationally intensive part of the algorithm described in Section 3 is
step 8—solution of the elliptic boundary value problem at each time level. The finite differ-
ence discretization produces a linear system of algebraic equations. The associated matrix
is banded and very sparse—only five nonzero coefficients per row—but the bandwidth is
O(
√

n), wheren is the total number of unknowns. Due to the high resolutions required,
a direct solver is thus far too costly, and we need to resort to an efficient iterative solver
that will produce a solution with the required accuracy in justO(n) operations. Multigrid
methods provide us with the necessary performance.

4.1. Multigrid Techniques

Efficient multigrid solvers for elliptic boundary value problems were developed in the
1970s (though conceived earlier), and the first comprehensive account of this approach and
related algorithms appeared in [18]. The field then quickly developed and branched into
specialized methods, “automatic” solvers that could deal with anisotropic and discontinu-
ous coefficients, algebraic methods, applications to systems and to nonelliptic problems,
and, later, nonPDE solvers. (For a basic introduction see [21]. A detailed exposition and
advanced concepts appear in [24] and [19].)

The essential distinction between the various multigrid approaches for elliptic boundary
value problems is in the choice of the intergrid transfers and the coarse-grid operator. For
problems with smooth isotropic coefficients very simple choices perform most efficiently.
However, in the present application, where the coefficients are discontinuous in certain
regions of the domain, with jumps of several orders of magnitude, we must resort to spe-
cialized methods. This difficulty was first studied in [17]. These ideas were then put together
in [22] in the form of a “black box” multigrid solver. This is the algorithm we employ here.

4.2. The Black Box Multigrid (BBMG) Algorithm

The black box multigrid (BBMG) algorithm is an automatic approach to multigrid so-
lution of discretized elliptic boundary value problems. This means that the solver is only
given the fine-grid data and the definition of the coarse grids (as well as an initial approx-
imation to the solution), and it generates the intergrid transfers and coarse-grid operators
automatically. The underlying assumption is that the coefficients of the elliptic operator
may be discontinuous but the fluxes are smooth. Hence, this solver is very suitable for our
present problem.

The BBMG method employs so-called Galerkin coarsening. This means that the coarse-
grid operator is defined by

L H = I H
h Lh I h

H . (4.1)

(Note that this definition “makes sense,” as it can be thought of as transferring the coarse-
grid solution to the fine grid, applying the fine-grid operator, and transferring the result back
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to the coarse grid. Thus,L H is indeed a coarse-grid approximation toLh.) Furthermore, the
prolongation and restriction operators are chosen to be the transpose of each other:

I H
h =

(
I h

H

)T
. (4.2)

Given (4.1) and (4.2), we find that once we choose a prolongation operator, the coarse-grid
correction process will be defined uniquely. The idea of the BBMG algorithm is to use the
fine-grid difference operator in the definition of the prolongation operator,I h

H . We describe
it here for the 2D case, using the notation of [23] (see [22, 23] for more details). A vertex-
centered coarsening is used, and the coarse-grid mesh is uniform with mesh intervals that
are twice the size of those of the fine grid. We denote fine-grid and coarse-grid indices, re-
spectively, by(I F, J F) and(IC, JC). Given the choice of coarse grid, roughly one quarter
of the fine-grid points coincide with coarse-grid points. At these points we simply define(

I h
Hv

H
)

I F,J F
= vH

IC,JC.

But for the remaining fine-grid points, the fine-grid template (stencil) is employed in the pro-
longation. Suppose that the fine-grid point(I F + 1, J F) lies midway between coarse-grid
points(IC, JC) and(IC + 1, JC), and thatLh has at(I F + 1, J F) the template3−N W −N −N E

−W C −E
−SW −S −SE

 . (4.3)

Then we define

(
I h

Hv
H
)

I F+1,J F
= (N W+W + SW)vH

IC,JC + (N E+ E + SE)vH
IC+1,JC

C − N − S
. (4.4)

Here, the columns of (4.3) have been summed to average out the vertical dependence.
A similar formula holds for the fine-grid point(I F, J F + 1) that lies midway between
coarse-grid points(IC, JC) and(IC, JC+ 1)The fine-grid values at the remaining points,
(I F + 1, J F + 1), are now determined so as to satisfy the equation(

Lh I h
Hv

H
)

I F+1,J F+1 = 0. (4.5)

4.3. Application of the BBMG Algorithm to the Time-Dependent Problem

We have not yet discussed how we choose our initial approximation to the solution at
each new time level. We followed the procedure of [20], which defines a so-called modified
F-cycle, which applies the well-known full multigrid (FMG) algorithm while exploiting
the solution of the previous time level to obtain a good first estimate. This is equivalent to
performing an FMG algorithm for only thechangein the solution over each time level. It
avoids excessive accumulation of error due to the truncation of the iterative process, which
is an essential property, given the very large number of time levels. The modified F-cycle
is now described.

3 This means that the equation at node(I F + 1, J F) is

−N Wuh
I F,J F+1 − Nuh

I F+1,J F+1 − N Euh
I F+2,J F+1 · · · − SEuh

I F+2,J F−1 = f h
I F+1,J F .
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1. Beginning with the fine-grid solution of the previous time level, transfer residuals to
the right-hand sides of progressively coarser grids, until right-hand sides have been defined
on all the grids.

2. Solve the problem on the coarsest grid (directly or by repeated relaxation). Prolong
the solution to the second-coarsest grid.

3. Perform one V-cycle on the second-coarsest grid, and prolong the resulting solution
to the third-coarsest grid.

4. Continue this process until the finest grid is reached, and perform one (or more) V-
cycles on the finest grid.

In all our cycles we employed the BBMG solver withνpre = 2 andνpost = 1.

4.4. Planned Optimization

Although the multigrid algorithm is optimal as an elliptic boundary value problem solver,
the fact that it is employed at every time level makes it still the most computation-intensive
part of the algorithm. We therefore plan improvements which we expect will reduce the
overall cost dramatically.

• At each time level we effectively solve for the increment inU. The physical changes in
U are substantial near the interface, where the coefficientk in (1.5) changes discontinuously.
But away from this region the change per time level is slight (given the small time steps.)
More important, this change is extremely smooth except near the interface. Therefore it
can be approximated well on a far coarser mesh than that used near the interface. This
can be exploited by employing local refinement techniques. However, such techniques are
relatively quite complicated to implement in the framework of BBMG algorithms. Hence we
shall instead only employ local processing (near the interface) during most of the integration,
while freezingU far away from the interface. This procedure is justified by the fact that the
time-step size is controlled by the time-dependent equation (2.2), and it is far smaller than
necessary for accuracy ofU. Only once every few time steps do we actually need to employ
the full BBMG solver.
• A second approach for the optimization of the solver is to employ a semi-implicit

time-stepping approach. The principal part of (2.2) is the biharmonic operator (as seen
by (2.29)). This term can be treated implicitly by employing a fairly standard multigrid
algorithm. This would allow us to use much smaller time steps. We can also treat other terms
implicitly, including nonlinear terms (employing the nonlinear full approximation scheme
multigrid method). We expect these changes to increase the computational efficiency very
significantly.

5. SIMULATION RESULTS

In this section, we present the results for two sets of simulations. The first set displays
interface motion under the surface diffusion only. The second set combines the surface
diffusion with electromigration forces. Different initial configurations are considered [1].

All the simulations were executed on one processor from a DEC AlphaServer 8800-5/
300, with 8 CPUs, 300 MHz, 256 MB of memory, and a DEC-UNIX operating system.

5.1. Motion under Surface Diffusion

In this case, the steady-state configuration of the front is circular, independent of its initial
shape. The area confined by the closed front remains constant for the duration of the motion.
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Elliptic initial front. Consider an elliptic front

x2

a2
+ y2

b2
= 1 (5.1)

with the semi-axesa = 2 andb = 1. Equation (5.1) is presented in the parametric form as

fx = a cosr, fy = bsinr, 0≤ r ≤ 2π. (5.2)

The initial curvature is

K (r ) = f ′′y f ′x − f ′′x f ′y(
f ′ 2x + f ′ 2y

)3/2 =
ab

(a2 sin2 r + b2 cos2 r )3/2
> 0, (5.3)

where prime denotes derivative with respect to parameterr . As we see, the ellipse curvature is
always positive:Kmax= a/b2, Kmin = b/a2. The area confined isπab, and the arclength is

s(r ) =
r∫

0

√
f ′ 2x + f ′ 2y dz=

r∫
0

√
a2 sin2 z+ b2 cosz dz= a[E(ε)− E(π/2− r, ε)],

(5.4)

whereε = √a2− b2/a is the eccentricity of the ellipse andE is the complete elliptic integral
of second kind. The entire interface length is 4aE(ε). Derivatives of the curvature with re-
spect to arclength can also be presented as a function of the parameterr . The first derivative is

Ks(r ) = dK/dr

ds/dr
= − 3/2ab(a2− b2) sin 2r

(a2 sin2 r + b2 cos2 r )3/2
(5.5)

|Ks|max= 4
√

6ab2(a2− b2)(a2− b2/3)[
(a2+ b2)

√
a2− b2/3− (a2− b2)3/2

]3 . (5.6)

The second derivative is

Kss= −3ab(a2− b2)

2

[
2 cos 2r

(a2 sin2 r + b2 cos2 r )7/2
− 3(a2− b2) sin2 2r

(a2 sin2 r + b2 cos2 r )9/2

]
. (5.7)

The minimum (negative) value is

K min
ss = −3

a(a2− b2)

b6
. (5.8)

The maximum positive value ofKss is reached atr = r ∗,

cos 2r ∗ = 7
√
(a2− b2)2+ 116/245a2b2− 3(a2+ b2)

4(a2− b2)
, (5.9)

provided the eccentricityε exceeds 2/
√

19. For the stated values of semi-axes, the relation-
ships forK , Ks, andKss are plotted versus arclength in Fig. 5. Results of the numerical
simulation are presented in Fig. 6.
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FIG. 5. Elliptic front, its curvature, and derivatives of curvature.

Note that the interface contour reaches a steady state after 30,000 steps or 1.4 h CPU time.
Recall that the PDE under consideration is of fourth order in space. For the second-order
PDE with the same initial configuration and the same 60× 60 grid, it took less than half a
minute to solve the problem; see Fig. 2. The interface configuration is set by 500 generating
points. For the spatial resolutionh = min(1x;1y), the time step is bounded by stability
requirements:1t = λh2 for the second-order equation and1t = λh4 for the fourth-order
equation. We usedλ = 1/8 for all two-dimensional simulations to obtain stable results.
Larger values ofλ led to instability.

As part of validating our program we also analyzed the evolution of an ellipse with semi-
axis under diffusion only with a semi-axis ratio of 10, in order to compare with [28] (Fig. 3,
p. 1483). Our contours are drawn at the same physical problem times (see Fig. 7). It was
done on a 148× 148 grid, and the interface was specified by 400 generating points. About
1 million steps were required to achieve steady-state.

Triangle with rounded corners.The polygons that were considered in this study had
rounded corners. The rounded equilateral triangle is shown in Fig. 8 and can be specified
parametrically as

fx = (2+ cosr ) sinr, fy = −(2− cosr ) cosr − 1/2, 0≤ r < 2π. (5.10)

The interface curvature is

K (r ) = 2(1− cos 3r )

(5+ 4 cos 3r )3/2
, 0≤ K ≤ 4. (5.11)
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FIG. 6. Evolution of initially elliptic front under surface diffusion forces.

FIG. 7. Evolution of highly eccentric elliptic front under surface diffusion forces.
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FIG. 8. Triangular front, its curvature, and derivatives of curvature.

The arclengths(r ) is given by

s(r ) =
r∫

0

√
5+ 4 cos 3z dz= 2 E(3r/2, 2

√
2/3). (5.12)

The entire perimeter is 12E(2
√

2/3) ≈ 13.368. The curvature derivatives are:

Ks = 6(11− 2 cos 3r ) sin 3r

(5+ 4 cos 3r )3
, |Ks| ≤ 13.993 (5.13)

Kss = 18(88+ 45 cos 3r − 54 cos 6r + 2 cos 9r )

(5+ 4 cos 3r )9/2
, −234≤ Kss≤ 57.6028. (5.14)

The area confined by the front is

A = 1

2

∮
( fx d fy − fy d fx) = 1

2

2π∫
0

( fx f ′y − fy f ′x) dr = 7π

2
. (5.15)

A grid of size 60× 60 was used. The relationships for the curvature and its derivatives are
plotted vs arclength in Fig. 8. Results of the numerical simulation are presented in Fig. 9.
The simulation took 40,000 steps (1.8 h CPU time) to reach a steady state. It is interesting
to note that the initial curvature is nonnegative everywhere and vanishes at three discrete
points only (at the midpoints of the triangle sides). However, the curvature becomes locally
negative as the front moves. Four hundred fifty points were used to describe the interface
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FIG. 9. Evolution of initially triangular front under surface diffusion forces.

configuration. The center of gravity of the figure given by Eq. (5.10) is located at the origin.
The side of the regular circumferential triangle (with sharp corners) is 3

√
3. The area of

the figure makes up 28π/54
√

3≈ 94% of the triangle area. The other missing 6% is due
to rounded corners.

Square with rounded corners.The parametric description of a square with rounded
corners, illustrated by Fig. 10, is given by

fx = (5− cos 2r ) cosr

4
, fy = (5+ cos 2r ) sinr

4
, 0≤ r < 2π. (5.16)

The initial curvature is

K (r ) = 4 sin2 2r

(4− 3 sin2 2r )3/2
, 0≤ K ≤ 4. (5.17)

The arclengths(r ) is given by

s(r ) = 3

4

r∫
0

√
4− 3 sin2 z dz= 3

2
E(2r,

√
3/2). (5.18)
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FIG. 10. Square front, its curvature, and derivatives of curvature.

The complete length of the interface is 6E(
√

3/2) ≈ 7.2666. The confined area is 39π/32,
and it takes approximately 96% of the area of the circumferential square with sharp corners.
The derivative of the curvature with respect to the arclength is

Ks = 4

3

38 sin 4r − 3 sin 8r

(4− 3 sin2 2r )3
, |Ks| ≤ 16.683. (5.19)

The second derivative of the curvature is

Kss= 16

9
· 456+ 335 cos 4r − 288 cos 8r + 9 cos 12r

(4− 3 sin2 2r )9/2
, −312.888≤ Kss≤ 78.271.

(5.20)

The curvature and its derivatives are plotted vs arclength in Fig. 10. Results of the numerical
simulation are presented in Fig. 11. Four hundred points were used to specify the interface
curve on a grid of size 60× 60. The simulation took 20,000 steps and 15 min CPU time to
reach a steady state.

Butterfly contour. The butterfly contour, plotted in Fig. 12, is a solution for the ordinary
differential equations

d fx
ds
= zx√

z2
x + z2

y

,
d fy
ds
= zy√

z2
x + z2

y

, (5.21)
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FIG. 11. Evolution of initially square front under surface diffusion forces.

wheres is the arclength andzx, zy are functions defined as

zx = − f 5
y

(
f 2
x + f 2

y + a2
)
, zy = f 5

x

(
f 2
x + f 2

y − a2
)
. (5.22)

We seta = 1 and used the initial conditions ats= 0 : fx = 0 and fy = 0.2. The interface
length is 6.3818, and the confined area is 1.6108. The curvature and its derivatives are

FIG. 12. Butterfly front, its curvature, and derivatives of curvature.
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FIG. 13. Evolution of butterfly front under surface diffusion forces.

plotted vs arclength in Fig. 12. Results of the numerical simulation are presented in Fig. 13.
A 100× 100 grid and 1000 points that specify the interface line were used. Note that during
the evolution, the butterfly (see Fig. 12) transforms first into the Cassini oval, then evolves
into the ellipse, and finally reaches a steady-state circle.

Groove evolution. We consider the evolution of a long groove with rounded ends; see
Fig. 14. Note that the rounding curve is not a circular arc. The circle is inappropriate for
this simulation. The reason is that at the point where the circular arc joins the straight line,
the curvature is discontinuous and jumps from zero toK = 1/radius. Thus, the curvature
is a step function, its derivative with respect to arclength is a delta function, and higher
derivatives are delta functions of higher orders. Such interface configurations are usually
treated with essentially nonoscillatory (ENO) schemes. An ENO scheme is not used here.
Therefore, we apply a special transition curve. Its curvature is a polynomial function of the
arclength. At the joint points, the curvature and its derivatives (up to the second order and
even higher) all vanish, to match those of a straight line. For the groove considered, the
straight portions are of length 20, the transition curves are of length 8, and the groove width
is 2.4. The maximum curvature of the transition curve is 1. The interface perimeter is 56,
and the confined area is approximately 64.6. Although the slope angle and its derivatives
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FIG. 14. Groove front, its curvature, and derivatives of curvature.

are continuous, they vary rapidly with the arclength, and the corresponding plots in Fig. 14
bear a resemblance to delta functions of different orders. The curvature and its derivatives
are plotted vs arclength in Fig. 14. Results of the numerical simulation are presented in
Fig. 15.

A 200× 200 grid was used. Six thousand points were used to specify the interface line.
The groove does not split into pieces as it evolves. It remains a unified, simply connected
region.

Dumbbell evolution. In order to check accuracy and convergence in time, a dumbbell
problem was run using two space resolutions: a coarse grid, 100×100, and a fine grid, 150×
150. A “regular” time step ofλ = 1/8 was used with both grids.

The evolution scenario for the coarse grid and regular time step (CFL) is presented in
Fig. 16. The dumbbell evolved to a perfect circle. The fine grid with the regular (CFL) time
step accumulated a significant error, after a large number of steps, and the computation was
stopped before reaching steady-state.

The same fine-grid computation was repeated with a time step twice as small. The evo-
lution scenario was visually the same as that for the coarse grid and regular step; it reached
a steady state at the same problem time.

The area confined by the closed interface should remain constant and the error in this
measure can be used as an indicator for the accuracy of the computation. Two plots are shown
in Fig. 17. The upper plot shows the effect of the mesh resolution when using the same
λ = 1/8. The time axis for both graphs is normalized in such a way that it is proportional to
“problem time,” i.e., it corresponds to the step of the coarse grid, while the fine-grid steps
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FIG. 15. Evolution of long groove under surface diffusion forces.

are adjusted by a factor of 1.54. The lower plot shows the effect of the time step when using
the same fine grid. The time steps correspond toλ = 1/8 andλ = 1/16. The time axis is
again normalized accordingly.

Topological changes. In order to check the ability of the present formulation to follow
topological changes we performed two experiments.

The first involves the merging of two long ellipses of aspect ratio 10 with centers 0.42
apart; see Fig. 18. The ellipses become fatter and eventually touch at the symmetry axis.
At this point the parametrization of the two interface curves is changed to a single curve.
Subsequently, the merged void evolves to a perfect circle.

The second experiment involves the same two long ellipses but this time with centers
0.32 apart; see Fig. 19. The ellipses first touch at two points off the vertical symmetry axis.
Now there is a merging of the two outer parts of the curves and simultaneously the merging
of the inner parts of the curves and the splitting of an inner island of material. Subsequently,
both the merged void and the inner island evolve to perfect circles. The final configuration
is multiply connected.
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FIG. 16. Evolution of dumbbell front under surface duffusion forces.

FIG. 17. Accuracy of numerical scheme for a dumbbell evolution: Coarse and fine grid; regular and fine time
step.
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FIG. 18. Merging of two elliptic fronts under surface diffusion forces, resulting in a simply connected region.

FIG. 19. Merging of two elliptic fronts under surface diffusion forces, resulting in a multiply connected
region.
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5.2. Motion under Surface Diffusion and Electromigration Forces

In this section we examine three major cases of ratio between field forces and diffusion
forces. In our study they are classified as weak, moderate, and strong electric fields.

The interface motion under governing equation (2.2) was studied, by varyingα, the ratio
between the electric field forces and the surface diffusion forces.

Weak electric field. In this series we assumeα = 1, which corresponds to a relatively
weak field. Due to the field forces, the void migrates in the direction of the field, but since the
diffusion forces prevail, the steady state configuration of the void contour is a circle. For all
the tests, the conductivity of the void iskin = 10−6 while the conductivity of the surrounding
material iskout = 1. The gradient of the external voltage (in thex direction) was assumed
to be one. Figs. 20–29 present the void initial configuration, evolution, and migration. For
the initial configuration, we present the voltage and its derivatives vs arclength of the void
and the resulting normal velocity of the front. We also specify the total electric resistance
of the interconnect which is given by Eq. (3.23).

First, migration of a circular void was studied. The initial circular shape does not change.
According to Eq. (2.20), the velocity of the migration of the circular void is 2αE/R, where
R is the void radius andE is the field strength.

FIG. 20. Evolution and migration of elliptic void in a weak electric field (with the large axis of the ellipse
coinciding with the field direction).
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FIG. 21. Distribution of electric potential, its derivatives, and normal velocity for elliptic void (with the large
axis of the ellipse coinciding with the field direction).

FIG. 22. Evolution and migration of elliptic void in a weak electric field (with the large axis of the ellipse
normal to the field direction).
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FIG. 23. Distribution of electric potential, its derivatives, and normal velocity for elliptic void (with the large
axis of the ellipse normal to the field direction).

FIG. 24. Evolution and migration of triangular void in a weak electric field (with the large axis of the triangle
coinciding with the field direction).
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FIG. 25. Distribution of electric potential, its derivatives, and normal velocity for triangular void (with the
large axis of the triangle coinciding with the field direction).

FIG. 26. Evolution and migration of triangular void in a weak electric field (with the large axis of the triangle
normal to the field direction).
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FIG. 27. Distribution of electric potential, its derivatives, and normal velocity for triangular void (with the
large axis of the triangle normal to the field direction).

FIG. 28. Evolution and migration of square void in a weak electric field.
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FIG. 29. Distribution of electric potential, its derivatives, and normal velocity for square void.

FIG. 30. Evolution and migration of circular void in a moderate electric field.
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Migration and evolution of an elliptic void is simulated in Fig. 20. The larger axis of the
ellipse is parallel to the strengthE of the external field. Figure 21 presents the voltage, its
derivatives, and the normal velocity of the initial front. A similar problem, where the larger
axis is normal to the field strength, is presented in Fig. 22. The initial characteristics of the
front are presented in Fig. 23.

It is interesting to note that in the first case, the initial resistance of the interconnect is
less than its steady state resistance. In the latter case, the initial resistance exceeds that of
the steady state.

Next we consider migration and evolution of a triangular void. The triangle is equilateral
with rounded corners. We distinguish between two cases: 1. the axis of symmetry of the
triangle is parallel to the elective field (see Fig. 24 for the evolution and motion and Fig. 25
for the initial characteristics); 2. the axis of symmetry is normal to the field (Figs. 26 and 27,
respectively). The motion and initial characteristics of a square void with rounded corners
are presented in Figs. 28 and 29.

FIG. 31. Evolution and migration of circular void in a strong electric field.
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Moderately strong field. Motions caused by a strong electric field(α À 1)were consid-
ered. It is known [2] that when the parameterα exceeds a definite critical value, the circular
equilibrium form of the void boundary becomes unstable, and other (stable) equilibrium
forms evolve. Kraft and Arzt [25] found that electromigration-induced failure of metallic
interconnects in integrated circuits occurs when rounded voids deform into narrow slit-like
voids, which are often transgranular. The mechanism of this shape change is examined in
[25] where the numerical simulation is applied for both finite element and finite difference
approaches. These authors use a finite element method to find the distribution of the den-
sity of electric current and temperature in the vicinity of the void. The authors take into
consideration the nonuniform Joule heating and the dependence of the surface diffusion
coefficient on the temperature.

When we consider the motion of a void in a strong electric field, the computational
procedure needs additional work. As the number of iterations increases, the location of the
generating points on the interface line becomes more and more nonuniform. Even when the

FIG. 32. Evolution and migration of circular void in a strong electric field (continued).
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initial configuration of the zero level line is generated by equally spaced points (or nearly
equally spaced), after some time there is a high density of generating points within relatively
short sectors of the interface line, and there are long sectors where these points are sparse.
To overcome this problem, a special procedure was developed to redistribute the generating
points in a uniform equally spaced manner. This redistribution is accomplished by spline
interpolation. The redistribution procedure should not necessarily be applied at each time
step. It may be used, say, every 10 or 100 time steps, depending on the “condensation rate”
of the generating points.
α = 20 is used to simulate a moderately strong field. In this case, the round void does

not remain round. It approaches a special steady state configuration where the arc of initial
curvature is placed in the “plus” side of the electric field. On the other hand, the arc of a
reduced or even negative curvature is placed in the “minus” side of the field. Results of this
numerical simulation are presented in Fig. 30.

FIG. 33. Evolution and migration of rectangular void in a strong electric field.
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Extremely strong field.α = 50 is used to simulate an extremely strong field. Initially,
the void reaches the shape described above for the moderately strong field. But now this is
not a steady state. The void continues its evolution. It deforms and reaches a two “fingers”
shape, exactly as was shown in [2]. Then, a third “finger” appears. Finally, it splits into
several parts. Thus, for a very strong field, sometimes the steady state does not exist at all
for large voids, and exists only for small ones. Stability depends on the area of the void.
Results of the numerical simulation are presented in Figs. 31 and 32.

As we see, there is a considerable loss of accuracy at the last stages of the evolution before
the split of the void occurs. At these stages, the curvature varies rapidly within a wide range
which resembles a delta function. Its derivatives are delta functions of higher order. As a
result, the area confined by the void varies, although it should remain constant following
the material conservation law. In our numerical example the area more than doubles before
the split. We conjecture that a finer spatial grid and a smaller time step may reduce the error.
Note that even with this error, the general picture seems to be correct.

Dynamics of migration and evolution of the rectangular void in the extremely strong field
is presented in Fig. 33. The initial sizes are 1 and 2 (1 in the field direction and 2 in the
normal to the field direction). The corners of the initial rectangle are rounded.

Motion of the triangular void is presented in Fig. 34. The initial shape of the void is
an equilateral triangle with rounded corners. Its axis of symmetry coincides with the field

FIG. 34. Evolution and migration of triangular void in a strong electric field.
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FIG. 35. Separation of dumbbell void in a strong electric field. The grid is 60× 50 with 400 generating points
for the interface line.

FIG. 36. Equivalent interface line for diffusion component of velocity for upper part of dumbbell.
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direction. The rounded corner, located on this axis, points toward the negative of the external
voltage. Figure 35 shows a separation example which is a motion under both diffusion and
electric field forces (if there is diffusion only, then no separation occurs, as any initial shape
becomes circular).

The interface in the dumbbell example is symmetric. At the bottleneck, the level function
ceases to be a distance function because two branches become too close to each other. This
leads to a distortion of the level function since we have overlapping of two different distance
functions. In order to calculate the fourth derivatives numerically we need at least five cells.

To avoid this situation, the lower branch of the dumbbell was replaced by another curve.
This curve was obtained with a tangent line to the circles of the dumbbell in the lower
half-plane, as demonstrated in Fig. 36.

This curve was used to calculate the diffusion component of the velocity for the upper
half-plane. It is correct because the diffusion component at the given point of the interface
depends only on local conditions, i.e., on the shape of the interface near this point. On the
other side, this modified interface does not include a bottleneck and has no problems with
the distance function overlap.

Hovewer, this is not true for the electric field component of the velocity. Distribution of
the voltage and its derivatives at the given point depends on the values of conductivity at all
points of the domain, so the true shape with the bottleneck is used to calculate the electric
component of the velocity. However, the distance function is not needed for this electric
component, so the overlap problems do not arise. After we find the interface line on each
time step, the true shape is an upper branch+ symmetric lower branch.

6. CONCLUSIONS

A computational methodology was developed and tested for the simulation of electro-
migration phenomena in the interconnects of microelectronic circuits. A void motion was
studied first under surface diffusion only, and then under both diffusion and electric field
forces. Under pure surface diffusion, any initial configuration of the front reaches a steady
state which is in a circular form. The area, confined by the closed front, remains constant
during the evolution. In the weak electric field, an arbitrary initial shape becomes a circle,
and in addition, the void moves along the field direction. The superconductive metallic
island does not move. Under the strong electric field, the circular equilibrium form of the
void becomes unstable and it is transformed into slit-like configurations.

In order to solve the fourth-order governing PDE a finite difference discretization in
space and a Runge–Kutta 2 procedure in time were applied. The low order of Runge–Kutta
scheme is justified since the value of the time step is fairly small for stability requirements.

The initial location of the front should be specified to the governing PDE as a finite set of
discrete points which generates a closed curve. However, there are no boundary conditions
at all. Instead the forward and backward differences are applied to approximate the spatial
derivatives along the boundaries of the computational box.

To solve the static elliptic PDE for the voltage distribution, a finite difference scheme
was applied. The resulting set of linear equations which have a sparse band matrix is solved
by a special multigrid procedure, which speeds up the computations.

Variation of the total resistance of the interconnect was examined. This value can be
further used as an interconnect failure criterion.
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A number of original analytic relationships were developed for the curvature and its
derivatives, which simplify the computational procedure.

APPENDIX: DERIVATION FOR THE TWO-LAYER CASE

We consider a conducting strip made of a thin metal film, attached to a strip of nonzero
conductivity substrate. The metal film may be continuous or it may be made of conducting
patches with voids in between. We allow the metal film and substrate to have variable
thickness. In the present formulation we neglect the interface resistance. The strip is attached
to electrodes at its ends. We may want to compute the total resistance of the strip as well
as the local field strength which determines the resulting electromigration. This is a more
realistic model as opposed to the model assuming a zero-conductivity substrate. This model
also allows us to consider the behavior of a metal film with varying effective thickness at
no extra cost.

We will consider a two-layer case where the subscript 1 designates the top layer (metal
film) and the subscript 2 the substrate. The interface between the layers is denotedh0(x, y).
Let H be the scale of the elevations and letL be the horizontal scale. We will assume that
ε = H/L ¿ 1 and that the slopes ofhi , i = 0, 1, 2, are small.

σ = 0
h1(x, y)

n
σ1(x, y)

h0(x, y)

σ2(x, y)
h2(x, y)

σ = 0.

Ohm’s law implies

j = σE, (7.23)

E = −∇3φ, where ∇3 =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
. (7.24)

Here,j is the electric current density vector,E is the electric field vector,φ is the electric
potential, andσ is the material conductivity. We assume thatσ is independent ofz in each
layer, i.e.,σ1 = σ1(x, y), σ2 = σ2(x, y).

For steady fields, Maxwell’s equations with vanishing space charge yield

∇3 · j = 0, (7.25)

hence,

∇3 · (σE) = ∇3 · (σ∇3φ) = 0. (7.26)

In the scaled coordinates(X,Y, Z) = (x/L , y/L , z/H), Eq. (7.26) becomes

ε2∇ · (σ∇φ)+ ∂

∂Z

(
σ
∂φ

∂Z

)
= 0, (7.27)
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where

∇ ≡ ∇horizontal=
(
∂

∂X
,
∂

∂Y

)
.

The following relations describe normal and tangential continuity at the interface between
the layers:

∇3 · (σE) = 0⇒ n · (σ2E2− σ1E1) = 0, (7.28)

∇3× E = 0⇒ n× (E2− E1) = 0, (7.29)

wheren is a vector normal to the interface. Hence,

n · (σ2∇3φ2− σ1∇3φ1) = 0, (7.30)

and

n× (∇3φ2−∇3φ1) = 0. (7.31)

For simplicity we will assume that the material interfaceh0 is horizontal atz= 0.

σ = 0
h1(x, y)

z
σ1(x, y)

h0(x, y) = 0

σ2(x, y)
h2(x, y)

σ = 0.

We therefore have atZ = 0,

σ1
∂φ1

∂Z
(X,Y, 0) = σ2

∂φ2

∂Z
(X,Y, 0), (7.32)

∇φ1 = ∇φ2. (7.33)

The top and bottom surfaces are given by

Sj (x, y, z) = 0= z− h j (x, y) = H(Z − Hj (X,Y)). (7.34)

Since

∂φ

∂n
= ∇3φ · ∇3Sj

|∇3Sj | = 0,

then at the top and bottom surfaces

∂φ

∂z
= H∇3φ · ∇2Hj

(
x

L
,

y

L

)
, (7.35)
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or, equivalently,

∂φ

∂Z
= ε2∇φ · ∇Hj . (7.36)

We can perform a singular perturbation analysis by assuming the expansion

φ(X,Y, Z) =
∞∑

m=0

ε2mφ(m)(X,Y, Z), (7.37)

where theφ(k) are functions of orderO(1) in ε. Substitution of (7.37) into (7.27), setting
ε = 0, produces

∂2φ(0)

∂Z2
= 0, (7.38)

φ(0) = A2Z + B2 (layer 2), (7.39)

φ(0) = A1Z + B1 (layer 1). (7.40)

By (7.36) we have at the top

∂φ
(0)
2

∂Z
= 0⇒ φ

(0)
2 = B2(X,Y), (7.41)

and at the bottom

∂φ
(0)
1

∂Z
= 0⇒ φ

(0)
1 = B1(X,Y). (7.42)

Therefore the continuity condition (7.33) implies (apart from a moot constant)

B2 = B1. (7.43)

Thus, at this order,

φ
(0)
2 = φ(0)1 = φ(0)(X,Y). (7.44)

Now we consider the next-order terms in (7.36). At thej th interface (top and bottom)

∂φ
(1)
j

∂Z
= ∇φ(0) · ∇Hj , j = 1, 2. (7.45)

From (7.32), using (7.41) and (7.42), we get

σ1
∂φ

(1)
1

∂Z
= σ2

∂φ
(1)
2

∂Z
. (7.46)

Now, at this order in Eq. (7.27),

σ
∂2φ(1)

∂Z2
= −∇ · (σ∇φ(0)). (7.47)
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We integrate with respect toZ in both layers and obtain

σ1
∂φ

(1)
1

∂Z
= −∇ · (σ1∇φ(0)1

)
Z + A1(X,Y), (7.48)

and

σ2
∂φ

(1)
2

∂Z
= −∇ · (σ2∇φ(0)2

)
Z + A2(X,Y). (7.49)

At Z = 0 we get

σ1
∂φ

(1)
1

∂Z
= A1(X,Y), (7.50)

and

σ2
∂φ

(1)
2

∂Z
= A2(X,Y); (7.51)

therefore, by (7.46),

A1 = A2. (7.52)

Consider (7.48) atZ = H1:

σ1
∂φ

(1)
1

∂Z
= −∇ · (σ1∇φ(0)1

)
H1+ A1(X,Y). (7.53)

Substituting∂φ
(1)
1
∂Z from (7.45) leads to the following expression forA1(X,Y):

A1(X,Y) =
(
σ1∇φ(0)1

) · ∇H1+∇ ·
(
σ1∇φ(0)1

)
H1. (7.54)

Hence,

A1(X,Y) = ∇ ·
(
σ1H1∇φ(0)1

)
. (7.55)

Similarly, atZ = H2 we obtain

A2(X,Y) = ∇ ·
(
σ2H2∇φ(0)2

)
. (7.56)

From (7.44), (7.52), (7.55), and (7.56), we now have

∇ · ((σ1H1− σ2H2)∇φ(0)
) = 0. (7.57)

Multiplying (7.57) by H and noting thath2 is negative (so that|h2| is the thickness of the
lower layer), we finally obtain

∇((σ1h1+ σ2|h2|)∇φ(0)
) = 0. (7.58)

A careful presentation of a similar derivation, with motivation and details concerning the
treatment of boundary conditions, can be found in the monograph [3].
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